首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4913篇
  免费   375篇
  国内免费   162篇
化学   2453篇
晶体学   32篇
力学   851篇
综合类   48篇
数学   981篇
物理学   1085篇
  2023年   53篇
  2022年   86篇
  2021年   142篇
  2020年   173篇
  2019年   153篇
  2018年   106篇
  2017年   152篇
  2016年   209篇
  2015年   182篇
  2014年   265篇
  2013年   389篇
  2012年   262篇
  2011年   334篇
  2010年   273篇
  2009年   353篇
  2008年   307篇
  2007年   369篇
  2006年   281篇
  2005年   218篇
  2004年   200篇
  2003年   168篇
  2002年   138篇
  2001年   91篇
  2000年   99篇
  1999年   89篇
  1998年   62篇
  1997年   50篇
  1996年   35篇
  1995年   28篇
  1994年   30篇
  1993年   28篇
  1992年   25篇
  1991年   19篇
  1990年   17篇
  1989年   7篇
  1988年   16篇
  1987年   9篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1974年   2篇
  1971年   2篇
  1957年   2篇
排序方式: 共有5450条查询结果,搜索用时 437 毫秒
61.
Chemical reactivity of 2-methyl-2-phenyl-1,3-oxathiolan-5-one (1) toward various reagents such as hydroxyaldehyde, ketone, α,β unsaturated carbonyl compounds, heterocyclic amine, hydrazine, and hydrazide to give unpredicative opened and fused heterocyclic systems was investigated. Moreover, treatment of compound 1 with bromoester to afford the respective fused system, 2-methyl-2-phenylfuro[3,2-d][1,3]oxathiol-5(6H)-one (6) was implemented. Besides, 1H–1H nuclear overhauser effect spectroscopy was used for full confirmation of the compound 19. In addition, the density functional theory modeling study outcomes were discussed and all of the new synthesized compounds were evaluated as antioxidants and cytotoxicity assay against hepatocellular carcinoma cell line.  相似文献   
62.
Nonlinear least-squares regression is a valuable tool for gaining chemical insights into complex systems. Yet, the success of nonlinear regression as measured by residual sum of squares (RSS), correlation, and reproducibility of fit parameters strongly depends on the availability of a good initial solution. Without such, iterative algorithms quickly become trapped in an unfavorable local RSS-minimum. For determining an initial solution, a high-dimensional parameter space needs to be screened, a process that is very time-consuming but can be parallelized. Another advantage of parallelization is equally important: After determining initial solutions, the used processors can be tasked to each optimize an initial guess. Even if several of these optimizations become stuck in a shallow local RSS-minimum, other processors continue and improve the regression outcome. A software package for parallel processing-based constrained nonlinear regression (RegressionLab) has been developed, implemented, and tested on a variety of hardware configurations. As proof-of-principle, microalgae to environment interactions have been studied by infrared attenuated total reflection spectroscopy. Additionally, light microscopy has been used to monitor cell production. It is shown that spectroscopic data sets with 10,000?s of data points and >1000 nonlinear model parameters as well as imaging data with 100,000s of data points and >2000 nonlinear model parameters may now be investigated by constrained nonlinear regression. Acceleration factors of up to 8.1 have been obtained which is of high practical relevance when computations take weeks on single-processor machines. Solely using parallel processing, the RSS values may be improved up to a factor of 5.5.  相似文献   
63.
The flexibility of dose and dosage forms makes 3D printing a very interesting tool for personalized medicine, with fused deposition modeling being the most promising and intensively developed method. In our research, we analyzed how various types of disintegrants and drug loading in poly(vinyl alcohol)-based filaments affect their mechanical properties and printability. We also assessed the effect of drug dosage and tablet spatial structure on the dissolution profiles. Given that the development of a method that allows the production of dosage forms with different properties from a single drug-loaded filament is desirable, we developed a method of printing ketoprofen tablets with different dose and dissolution profiles from a single feedstock filament. We optimized the filament preparation by hot-melt extrusion and characterized them. Then, we printed single, bi-, and tri-layer tablets varying with dose, infill density, internal structure, and composition. We analyzed the reproducibility of a spatial structure, phase, and degree of molecular order of ketoprofen in the tablets, and the dissolution profiles. We have printed tablets with immediate- and sustained-release characteristics using one drug-loaded filament, which demonstrates that a single filament can serve as a versatile source for the manufacturing of tablets exhibiting various release characteristics.  相似文献   
64.
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a promising target for anticancer therapy due to its ability to counter the effects topoisomerase 1 (Top1) poison, such as topotecan, thus, decreasing their efficacy. Compounds containing adamantane and monoterpenoid residues connected via 1,2,4-triazole or 1,3,4-thiadiazole linkers were synthesized and tested against Tdp1. All the derivatives exhibited inhibition at low micromolar or nanomolar concentrations with the most potent inhibitors having IC50 values in the 0.35–0.57 µM range. The cytotoxicity was determined in the HeLa, HCT-116 and SW837 cancer cell lines; moderate CC50 (µM) values were seen from the mid-teens to no effect at 100 µM. Furthermore, citral derivative 20c, α-pinene-derived compounds 20f, 20g and 25c, and the citronellic acid derivative 25b were found to have a sensitizing effect in conjunction with topotecan in the HeLa cervical cancer and colon adenocarcinoma HCT-116 cell lines. The ligands are predicted to bind in the catalytic pocket of Tdp1 and have favorable physicochemical properties for further development as a potential adjunct therapy with Top1 poisons.  相似文献   
65.
The construction of hybrid metal-ion batteries faces a plethora of challenges. A critical one is to unveil the solvation/desolvation processes at the molecular level in electrolytes that ensure efficient transfer of several types of charge carriers. This study reports first results on simulations of mixed-ion electrolytes. All combinations of homo- and hetero-binuclear complexes of Li+, Na+ and Mg2+, solvated with varying number of ethylene carbonate (EC) molecules are modeled in non-polar and polar environment by means of first principles calculations and compared to the mononuclear analogues in terms of stability, spatial organization, charge distribution and solvation/desolvation behavior. The used PF6 counterion is shown to have minor impact on the geometry of the complexes. The desolvation energy penalty of binuclear complexes can be lowered by the fluoride ions, emerging upon the PF6 decay. These model investigations could be extended to rationalize the solvation structure and ionic mobility in dual-ion electrolytes.  相似文献   
66.
The inhibition effect of N,N′-phosphonomethylglycine (PMG) and vinyl phosphonic acid (VPA) on the 3% NaCl acidic solution corrosion of carbon steel iron was studied at different immersion times by potentiodynamic polarization, electrochemical impedance spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and computational methods. It is found from the polarization studies that PMG and VPA behave as mixed-type inhibitors in NaCl. Values of charge transfer resistance (Rct) and double layer capacitance (Cdl) in the absence and presence of inhibitors are determined. The PMG and VPA inhibitors were capable of inhibiting the corrosion process up to ≈91% and ≈85%, respectively. In the presence of PMG, the synergic effect of chlorine ions was observed. Density functional theory (DFT) was engaged to establish the adsorption site of PMG, VPA, and their deprotonated states. For studied compounds, the resulted values of ELUMO, EHOMO, energy gap (∆E), dipole moment (μ), electronic hardness (η), global softness (σ), electrophilic index (ω), and the electronic potential map are in concordance with the experimental data results regarding their corrosion inhibition behavior and adsorption on the metal surface.  相似文献   
67.
As a liquid‐liquid partition chromatography, counter‐current chromatography has advantages in large sample loading capacity without irreversible adsorption, which has been widely applied in separation and purification fields. The main factors, including partition coefficient, two‐phase solvent systems, apparatus, and operating parameters greatly affect the separation process of counter‐current chromatography. To promote the applications of counter‐current chromatography, it is essential to develop theoretical research to master the principles of counter‐current chromatographic separations so as to achieve predictions before laborious trials. In this article, recent progress about separation prediction methods are reviewed from a point of the steady and unsteady state of the mass transfer process of counter‐current chromatography and its mass transfer characteristics, and then it is divided into three aspects: prediction of partition coefficient, modeling the thermodynamic process of counter‐current chromatography, and modeling the dynamic process of counter‐current chromatography.  相似文献   
68.
In an attempt to find new dual acting histamine H3 receptor (H3R) ligands, we designed a series of compounds, structurally based on previously described in our group, a highly active and selective human histamine H3 receptor (hH3R) ligand KSK63. As a result, 15 obtained compounds show moderate hH3R affinity, the best being the compound 17 (hH3R Ki = 518 nM). Docking to the histamine H3R homology model revealed two possible binding modes, with key interactions retained in both cases. In an attempt to find possible dual acting ligands, selected compounds were tested for antioxidant properties. Compound 16 (hH3R Ki = 592 nM) showed the strongest antioxidant properties at the concentration of 10−4 mol/L. It significantly reduced the amount of free radicals presenting 50–60% of ascorbic acid activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, as well as showed antioxidative properties in the ferric reducing antioxidant power (FRAP) assay. Despite the yet unknown antioxidation mechanism and moderate hH3R affinity, 16 (QD13) constitutes a starting point for the search of potential dual acting H3R ligands-promising tools for the treatment of neurological disorders associated with increased neuronal oxidative stress.  相似文献   
69.
A new type of berberine derivatives was obtained by the reaction of berberrubine with aliphatic sulfonyl chlorides. The new polycyclic compounds have a sultone ring condensed to C and D rings of a protoberberine core. The reaction conditions were developed to facilitate the formation of sultones with high yields without by-product formation. Thus, it was shown that the order of addition of reagents affects the composition of the reaction products: when sulfochlorides are added to berberrubine, their corresponding 9-O-sulfonates are predominantly formed; when berberrubine is added to pre-generated sulfenes, sultones are the only products. The reaction was shown to proceed stereo-selectively and the cycle configuration was confirmed by 2D NMR spectroscopy. The inhibitory activity of the synthesized sultones and their 12-brominated analogs against the DNA-repair enzyme tyrosyl-DNA phosphodiesterase 1 (Tdp1), an important target for a potential antitumor therapy, was studied. All derivatives were active in the micromolar and submicromolar range, in contrast to the acyclic analogs and 9-O-sulfonates, which were inactive. The significance of the sultone cycle and bromine substituent in binding with the enzyme was confirmed using molecular modeling. The active inhibitors are mostly non-toxic to the HeLa cancer cell line, and several ligands show synergy with topotecan, a topoisomerase 1 poison in clinical use. Thus, novel berberine derivatives can be considered as candidates for adjuvant therapy against cancer.  相似文献   
70.
Type 2 diabetes mellitus (T2DM) is one of the most widely prevalent metabolic disorders with no cure to date thus remains the most challenging task in the current drug discovery. Therefore, the only strategy to control diabetes prevalence is to develop novel efficacious therapeutics. Dipeptidyl Peptidase 4 (DPP-4) inhibitors are currently used as anti-diabetic drugs for the inhibition of incretins. This study aims to construct the chemical feature based on pharmacophore models for dipeptidyl peptidase IV. The structure-based pharmacophore modeling has been employed to evaluate new inhibitors of DPP-4. A four-featured pharmacophore model was developed from crystal structure of DPP-4 enzyme with 4-(2-aminoethyl) benzenesulfonyl fluoride in its active site via pharmacophore constructing tool of Molecular Operating Environment (MOE) consisting F1 Hyd (hydrophobic region), F2 Hyd|Cat|Don (hydrophobic cationic and donor region), F3 Acc (acceptor region) and F4 Hyd (hydrophobic region). The generated pharmacophore model was used for virtual screening of in-house compound library (the available compounds which were used for initial screening to get the few compounds for the current studies). The resultant selected compounds, after virtual screening were further validated using in vitro assay. Furthermore, structure-activity relationship was carried out for the compounds possessing significant inhibition potential after docking studies. The binding free energy of analogs was evaluated via molecular mechanics generalized Born surface area (MM-GBSA) and Poisson-Boltzmann surface area (MM-PBSA) methods using AMBER 16 as a molecular dynamics (MD) simulation package. Based on potential findings, we report that selected candidates are more likely to be used as DPP-4 inhibitors or as starting leads for the development of novel and potent DPP-4 inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号